

This is a preprint of a paper intended for publication in a journal or
proceedings. Since changes may be made before publication, this
preprint should not be cited or reproduced without permission of the
author. This document was prepared as an account of work
sponsored by an agency of the United States Government. Neither
the United States Government nor any agency thereof, or any of
their employees, makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for any third party’s use,
or the results of such use, of any information, apparatus, product or
process disclosed in this report, or represents that its use by such
third party would not infringe privately owned rights. The views
expressed in this paper are not necessarily those of the United
States Government or the sponsoring agency.

INL/CON-09-17508
PREPRINT

The Analysis of
Dimensionality
Reduction Techniques in
Cryptographic Object
Code Classification

HSI 2010

Jason L. Wright
Milos Manic

May 2010

The Analysis of Dimensionality Reduction
Techniques in Cryptographic Object Code

Classification

Jason L. Wright1 and Milos Manic2

1Idaho National Laboratory, Idaho Falls, Idaho, USA,
2University of Idaho at Idaho Falls, Idaho Falls, Idaho, USA,

jlwright@ieee.org, misko@ieee.org

Abstract—This paper compares the application of three
different dimension reduction techniques to the problem of
classifying functions in object code form as being cryp-
tographic in nature or not. A simple classifier is used
to compare dimensionality reduction via sorted covariance,
principal component analysis, and correlation-based feature
subset selection. The analysis concentrates on the classifica-
tion accuracy as the number of dimensions is increased. It
is demonstrated that when discarding 90% of the measured
dimensions, accuracy only suffers by 1% for this problem. By
discarding dimensions, computational intelligence techniques
can be applied with a drastic reduction in algorithmic
complexity. The primary focus is on Intel IA32 instruction
set, but analysis shows consistent results on the Sun SPARC
instruction set.

Index Terms—correlation-based feature subset selection,
cryptography, dimensionality reduction, principal component
analysis (PCA), sorted covariance.

I. INTRODUCTION

Object code is the result of compilation of source

code (C, C++, etc.). Source code is generally processor

architecture independent, but the resulting object code is

tied to a particular CPU instruction set architecture. Object

code can also refer to a binary executable for a given

operating system and instruction set architecture.

The location cryptography in compiled object code has

three primary areas of application: malware analysis, hid-

den software feature detection, and export compliance. In

the malware analysis community, location of cryptography

is a concern as malware authors are employing strong

cryptography primitives. The much publicized Conficker

worm, for example, uses RSA and RC4 [1–2], and botnets

and other forms of malware are using similar methods [3–

4]. Hidden software feature detection is the detection of

unpublished, possibly malicious, features in software. The

idea here is to detect the presence of cryptography algo-

rithms in unexpected places. For example, the Microsoft

Calculator that ships with Windows should not contain

cryptography; encryption is not one of its listed features.

In the United States, an export license is required in many

cases if cryptography is to be exported in source or binary

form as a part of a product. To verify that cryptography is

This manuscript has been authored by Battelle Energy Alliance, LLC
under Contract No. DE-AC07-05ID14517 with the U. S. Department of
Energy. The United States Government retains a nonexclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for United States
Government purposes.

not being unintentionally exported, at least one company

provides a service that will scan source code for known

algorithms based on a database [5].

This work focuses on the problem of identifying the

dimensions to be measured for accurate location of cryp-

tography algorithms within a sample of compiled object

code. Once a dataset is gathered, a the behavior of a

simple classifier (linear regression) is used to compare

and contrast three different dimensionality reduction tech-

niques: sorted covariance, Principal Component Analysis,

and Correlation-based Feature Subset selection (CFS).

A simplistic technique for identifying cryptography has

been implemented for the IDAPro disassembler [6–7]. The

constants used by various cryptographic algorithms are

used as search strings. If identified, the assumption is made

that the algorithm is present. References to the located

string can then be used to determine the location of the

cryptographic function within the binary. The problem with

this technique is the assumption that the constants have not

been tampered with.

In [8], a simplistic, expert driven approach was used to

identify the properties of cryptographic functions. Empiri-

cally defined weights were applied to a single neuron with

a linear activation function. The inputs were the density

of a few opcodes (XOR, SHL, SHR, ROR, ROL). This

method was refined to include the total number of each

opcode as well as the density in training a non-trivial neural

network [9].

In this work, analysis is done on the opcodes emitted

by compilers to determine which instructions correspond

most closely with cryptography. Initial work is performed

with the Intel IA32 (x86) architecture [10–11]. IA32 is

also classified as a Complex Instruction Set Computer

(CISC). The same method is then used on the SPARC

version 9 architecture [12]. SPARC is chosen because

it is a representative Reduced Instruction Set Computer

(RISC). Results should generalize to other instruction sets

(PowerPC, ARM, etc.).

Various techniques have been applied to the problem

of identifying malware. Several of the techniques have

focused on statistical properties of malware. N -grams of

opcodes [13] and Bayesian analysis [14] have been demon-

strated as being capable of identify a sample of object

code as being malicious. This work differs in that ultimate

goal is classification of individual functions instead of the

program as a whole.

��������� 	
��

����
����������������������

157
• • • •• •• • • • •• • • • •• •• • •• • • •• • •••••••••••••••••••••• •• • • ••••••• • •

II. STATISTICAL DIMENSIONALITY REDUCTION

Informally, covariance is the measure of dependence of

two variables [15]. A high positive covariance indicates

that large and small values of one variable occur with

large and small values of the other. If small values of

one variable occur with large values of the other variable,

the covariance will tend to be negative. A covariance

close to zero means that the two variables do not possess

a strong relationship. Formally, the covariance of two

random values, X and Y is defined in (1) where μX and

μY are the mean of X and Y , respectively, and p(x, y)
is the joint probability mass function of x and y or the

probability that X = x and Y = y, (2).

cov(X,Y) =
∑
x

∑
y

(x− μX)(y − μY)p(x, y) (1)

p(x, y) = P (X = x and Y = y) (2)

A matrix of covariance values can be computed for n
random variables Xi, Xj for i = 1, . . . , n, j = 1, . . . , n as

shown in (3). The resulting matrix is symmetric because

cov(X,Y) = cov(Y,X).

ci,j =

{
var(X) i = j

cov(Xi, Xj) i �= j
(3)

Taking a vector (row or column) from the matrix, the

covariance with a particular variable can be determined.

Sorting by the absolute value gives a ranking of the

covariance of one variable to the variable of interest. This

is a naı̈ve form of dimensionality reduction by which

the highest magnitude covariance dimensions are ranked

against the classification dimension. It does not, however,

take into account redunancy amongst the variables (those

that have a covariance with each other).

Principal Components Analysis (PCA) is robust form of

dimensionality reduction. The results of PCA are a linear

transformation of the data to a new coordinate system.

Given n dimensions, PCA produces n linear transforms of

the original dimensions of the data as shown in (4), where

pc1 is the result of the linear transformation an,m (n is

the principal component number and m is the dimension

number) and xn is the value for dimension n for a given

data point.

pc1 = a1,1x1 + a1,2x2 + · · ·+ a1,nxn

...

pcn = an,1x1 + an,2x2 + · · ·+ an,nxn

(4)

Each linear transformation is orthogonal. The first prin-

cipal component captures the majority of the variance of

the original data, and each successive principal component

captures less. The total variance is equal to the original data

variance. Dimensionality reduction is achieved by keeping

some number of the principal components that capture the

majority of the variance in the data set, and discarding

the rest. Practically this means that all of the original

dimensions must be measured for each data point, but only

the most important principal component results need to be

stored.

The last technique applied in this paper is that of

Correlation-based Feature Subset selection (CFS) [16].

This algorithm finds dimensions that are predictive of the

type of the object, but have little correlation with each

other. Simple covariance analysis across the classification

dimension does not capture the effect of covariance of

other dimensions with each other. CFS seeks to address

this problem by applying a greedy search of the covariance

matrix to maximize covariance to the classification dimen-

sion and minimize the covariance of the selected variables

with each other.

III. DIMENSIONALITY REDUCTION ANALYSIS

The three dimension reduction techniques described in

Section II (sorted covariance, PCA, and CFS) are applied to

two different data sets. Performance is measured in terms

of accuracy (AC), precision (P), False Positive rate (FP),

and False Negative rate (FN). Each of these is defined

in terms of a confusion matrix [17], like that in Table 1.

Accuracy, (5), is a measure of correctly classified items

(positive and negative). Precision, (6), is a measure of

correctly classified positive cases. False positive, (7), and

false negative, (8), measure the proportion of incorrectly

classified positive and negative cases, respectively

classified as:
non-crypto crypto

(a) (b) non-crypto
(c) (d) crypto

TABLE 1: EXAMPLE CONFUSION MATRIX.

AC =
a+ d

a+ b+ c+ d
(5)

P =
d

b+ d
(6)

FP =
b

a+ b
(7)

FN =
c

c+ d
(8)

The first step in the process is to gather a representative

data set. It must be evaluated by an expert to determine

which functions are cryptographic in nature. After some

preliminary data analysis, each dimensionality reduction

technique is applied and evaluated for its impact on accu-

racy, precision, false positive rate, and false negative rate.

A. Gathering Data Set

Various disassembly and reverse engineering tools are

available. In this work, the GNU objdump utility is used to

disassemble libraries and applications. The general method

is to take a representative library and for each function

to compute the total number and density of each opcode

observed. Density is defined as the total number of a

particular opcode divided by the total number of opcodes

in the function, (9).

ρi,f =
of opcode i in function f

total opcodes in function f
(9)

The library is augmented with expert knowledge of

which functions are cryptography and which functions are

158

not (a simple binary “yes” or “no” for each function in the

library). The opcode totals and densities combined with

the binary “iscrypto?” value forms the matrix on which

this paper is based.

The representative library chosen is the C library from

OpenBSD on the Intel (32 bit) platform (IA32). This

library contains 1727 functions. Included in those func-

tions are several cryptographic algorithms: SKIPJACK,

BLOWFISH, DES, 3DES, MD5, MD4, SHA1, SHA2, etc.

(23 of the 1727 functions). To increase the number of

cryptographic algorithms, implementations of GOST, TEA,

LUCIFER, RC5, RC4, and IDEA were taken from [18],

compiled, and added to the base C library. System calls

like open(), close(), read(), and write() were removed from

the library. In total, 1776 functions were evaluated: 1723

non-cryptographic and 53 cryptographic.

The representative library was compiled with the GNU

Compiler Collection (GCC) using four different compiler

optimization levels (O0, O1, O2, and O3). Each level

changes the scheduling of instructions, as well as ordering

and may involve loop unrolling and function inlining. All

of these may have an impact on the instruction counts and

densities.

An oddity of the IA32 instruction set is that the cheapest

way to zeroize a register is using the xor instruction, e.g.

xor %eax,%eax. This is not truly an XOR operation; it

is an assignment of zero to the register %eax. As a result,

instructions using this idiom were not included in the data

set except as a part of the total number of instructions in

each function.

The definition of what, precisely defines an opcode

is also somewhat ambiguous. Originally this work used

strictly the mnemonic output by the disassembler to

uniquely determine the opcode. For the IA32 instruction

set, there are two commonly used assembly syntaxes,

referred to as AT&T and Intel. The objdump disassembler

uses AT&T syntax which adds a type modifier to the end of

many instructions [19]. For example, movb, movw, movl
are 8bit (byte), 16bit (word), and 32bit (long) movement

instructions. In Intel syntax the mnemonic is simply mov
for all three, because the width of the data type is inferred

by the registers involved. The authors decided to translate

AT&T syntax to Intel syntax.

The final list of instructions used and the opcode trans-

lations are shown in Table 2. For each function in the

representative library, the total number of each opcode and

the density (number of that particular opcode divided by

the total number opcodes in the function) was computed.

B. Initial Classification

At this point, there are 94 measured dimensions for

each function in the representative library: 47 totals and

47 densities. The addition of the classification dimension

makes for 95 total dimensions. A simple linear regression,

chosen for computational inexpensiveness, was performed

on this data matrix.

Table 3 shows the resulting confusion matrix after

several minor expert classification errors were fixed. The

false negative rate is 53.9% as classified by the linear

regression, but the overall accuracy is 98.2%. The poor

performance on cryptography functions suggests that if

addl, addw, adc ⇒ add
cmpb, cmpw, cmpl ⇒ cmp
incb, incw, incl ⇒ inc
movb, movw, movl ⇒ mov

movsbl, movswl, cltd ⇒ movs
movzbl, movzbw, movzwl ⇒ movz

shrd, shrl ⇒ shr andl ⇒ and
decl ⇒ dec divl ⇒ div idivl ⇒ idiv
negl ⇒ neg pushl ⇒ push roll ⇒ rol
shld ⇒ shl subl ⇒ sub testb ⇒ test
call cld imul ja jae jb
jbe je jg jge jl jle
jmp jne jns js lea leave
nop not or pop repnz ret
ror sar sete setg xchg xor

TABLE 2: OPCODES MEASURED FOR EACH FUNCTION AND ALIASES.

a solution exists for robust classification of cryptography

versus non-cryptography it is non-linear in nature. It is, at

least, close to being a linear.

classified as:
non-crypto crypto

6824 (a) 12 (b) non-crypto
112 (c) 96 (d) crypto

Classification rate
0.18% false positive
53.9% false negative
98.2% accuracy
88.9% precision

TABLE 3: LINEAR REGRESSION RESULTS (94 MEASURED

DIMENSIONS).

Figure 1 shows the residual case order plot of the

data. Of the 7048 points, 235 are identified as outliers

by the residuals (outside the 95% confidence level); 128

of these outliers are misclassified by the linear regression

and 107 are correctly classified outliers. In no case was

an outlier identified using the residual that was not also

misclassified by the linear regression. This suggests that

there are extreme values in the outliers.

Fig. 1. Residual case order plot.

C. Dimensionality Reduction

The data matrix was standardized to zero mean and unit

standard deviation. Zero mean simplifies (1) by making

159

μX = μY = 0. By standardizing, each dimension is given

equal weight in the covariance (i.e. columns with high

numerical values do not dominate the covariance).

Figure 2 depicts the twelve columns with the highest

covariance of the data set to the expert determination.

Figure 3 depicts the columns with the lowest covariance.

According to Figure 2, the density of xor instructions

is the single most telling feature of the dataset followed

closely by the total number of right shifts (shr). This

makes intuitive sense as the xor operation is rarely used

outside of cryptography and is quite common in the confu-

sion part of of Feistel networks [20]. Other indicators are

simple bitwise operations, like and, or, and rol (Rotate-

Left) or arithmetic operations like add. One oddity is the

movz (Move with Zero-extension) instruction. Upon closer

inspection, this instruction is commonly used to compute

modulo 256 or 65536. This is used in table references in

cryptography algorithms like RC4 and others.

In Figure 3, no feature has a strong negative covariance

with the expert determination. Several of these instructions

make intuitive sense as well. For example the call
instruction is used to call subroutines. Most core cryp-

tography algorithms are written to avoid calling other

subroutines.

Rank -O0 -O1 -O2 -O3 all
1 ρxor ρxor ρxor ρxor ρxor
2 σxor σshr σshr σshr σshr
3 σshr σxor σxor σxor σxor
4 σmovz σmovz σmovz σmovz σmovz
5 σor σor σor σand σor
6 σadd σand σand σor σand
7 σand ρor ρor σshl ρor
8 ρlea σshl σshl ρshr σshl
9 σlea ρrol ρrol ρrol ρrol
10 σmov σmov ρshl ρor σrol
11 σrol σrol σrol σadd σmov
12 ρor ρshl σmov σrol ρshr

Fig. 2. Covariance analysis of positive features.

Using the standardized data matrix, a principal compo-

nents analysis is performed. Figure 4 is a Pareto chart of

the first ten principal components (PCs) and the amount

of variance in the data set that is captured by those

components. There is a bar for each of the ten PCs and the

line is a running some of the variance captured. In a well

behaved data set, the first few PCs would capture 80% or

more of the total variance of the set. However, in this set,

the first 10 PCs represent less than 45% of the variance of

the data set.

With so little variance captured in each principal com-

ponent, an examination of the weights assigned to each

input dimension is difficult to interpret. Again, in a well

Rank -O0 -O1 -O2 -O3 all
1 ρpush ρcall ρtest ρcall ρcall
2 ρcall ρpush ρcall ρtest ρpush
3 ρsub ρje ρpush ρpush ρtest
4 ρje ρtest ρje ρje ρje
5 ρleave ρleave ρleave ρleave ρleave
6 ρjne ρret ρret ρjne ρjne
7 ρcmp ρjne ρjne ρret ρret
8 ρret ρsub ρjmp ρjmp ρsub
9 ρtest σtest σtest σcall σtest
10 σjne σcall ρsub ρsub σje
11 σje σje σcall σtest ρjmp
12 σcmp ρjmp σje σje σjne

Fig. 3. Covariance analysis of negative features.

behaved data set, examination of the weights assigned to

each dimension in each PC would provide insight into the

behavior of each dimension and provide an indication of

its relative importance.

Fig. 4. Variance captured per principal component.

Finally, Correlation-based feature subset is performed.

This technique attempts to find features that are predictive

to the type of the object, but with little correlation with

each other. The results of this analysis are shown in

Table 4. CFS is compared with the covariance analysis

already discussed for several optimization levels (O0, O2,

and the whole data set). To obtain a ranking of attributes,

10-fold cross validation was used with CFS and rank is

determined by the number of folds for which the attribute

was selected.

All of the attributes selected for the whole data set

also appear in the top covariance ranking. An interesting

quirk, however, is that CFS picked exactly one negative

covariance dimension: ρcall. It was only selected for the

O2 optimization level.

Figure 5 shows the linear regression classification results

of selecting attributes based on sorted covariance, PCA,

and CFS. In the graphs, accuracy, precision, false positive

rate, and false negative are plotted versus the number of

dimensions used (X axis). The dotted line (COV) repre-

160

-O0 -O2 All
COV CFS COV CFS COV CFS
ρxor ρadd/10 ρxor ρxor/10 ρxor ρje/10
σxor ρxor/10 σshr ρrol/10 σshr ρshr/10
σshr σxor/10 σxor σxor/10 σxor ρxor/10
σmovz ρjne/9 σmovz ρjle/9 σmovz ρmovz/10
σor σrol/9 σor σmovz/9 σor σrol/10
σadd ρshr/8 σand ρshr/8 σand σxor/10
σand ρlea/6 ρor ρtest/8 ρor σshl/7
ρlea σmovz/6 σshl ρcall/7 σshl ρor/4
σlea ρje/5 ρrol σshl/7 ρrol —
σmov ρor/5 ρshl ρxchg/6 σrol —
σrol ρmovz/4 σrol ρor/2 σmov —
ρor ρpop/4 σmov σshr/2 ρshr —

TABLE 4: COMPARISON OF COVARIANCE ANALYSIS TO CFS
ANALYSIS.

sents attributes sorted in order by their covariance with

the classification dimension. The solid line represents the

attributes selected by CFS. The dashed line is the number

of principal components used for the linear regression A

logarithmic scale is chosen for the number of dimensions

axis to emphasize the shape of the curve along the lower

number of dimensions. There is no improvement in false

positive rate for CFS with more than 7 dimensions, and

little improvment (0.2%) in accuracy with more than the 8

dimensions identified by CFS. In the case of false negative

rate, CFS and covariance are closely matched at eight di-

mensions (within 0.5%), but adding more dimensions with

covariance drops the false negative rate by approximately

5%. PCA has a lower false positive rate until almost all

PCs are used. However, it maintains a consistently higher

false negative rate until approximately the same number of

PCs are used. PCA also lags behind both COV and CFS

on accuracy. Based on these results, it would be difficult

to pick a “best” dimensionality reduction technique; each

one has its strengths.

Fig. 5. Covariance, PCA, CFS effect on AC, P, FN, and FP (IA32).

IV. TEST RESULTS

To test the methodology of dimensionality reduction

for consistency, the same techniques were applied to the

SPARC version 9 instruction set. SPARC is a Reduced

Instruction Set Computer whereas Intel IA32 is a Complex

Instruction Set Computer. The same representative library

used in Section III-A was compiled for SPARC using the

same compiler as before: GCC. Four different optimization

levels (O0 through O3) were applied as before.

The library was disassembled with objdump. Each in-

struction used in a cryptographic function was counted and

the density was computed. As with IA32, objdump uses

AT&T syntax and the type specifiers were removed from

the instructions so that, for example, ldb (Load Byte),

ldh (Load Halfword), ldw (Load Word), and ldx (Load

Extended Word) are counted as ld (Load Integer). Several

other translations were performed as well, including condi-

tional move instructions like movge (Move, if Greater or

Equal) being translated to simply mov and addcc (Add

and set Condition Codes) being translated to add. The final

list of instructions and translations is shown in Table 5. In

all, 49 different opcodes were measured resulting in 98

dimensions (count and density for each).

movcc, movcs, move, movg, movge, movl, movle, movne ⇒ mov
clrb, clrh, clrx ⇒ clr andcc ⇒ and
addc, addcc ⇒ add ldsb, ldsw ⇒ lds
ldub, lduh ⇒ ldu stb, sth, stx ⇒ st
ldx ⇒ ld mulx ⇒ mul orcc ⇒ or
sllx ⇒ sll srax ⇒ sra srlx ⇒ srl

subc ⇒ sub udivx ⇒ udiv andn b
bcc bcs be bg bge bgu
bl ble bleu bne bneg bpos

brnz brz btst call cmp inc
neg nop orn restore ret retl
rett save sdiv sethi smul wr

xnor xor

TABLE 5: OPCODES MEASURED FOR EACH FUNCTION AND ALIASES

(SPARC).

Figure 6 shows the covariance analysis of positive

features with the classification label. The instructions that

have high covariance with the classification dimension are

quite different from IA32, but there are some similarities.

The ldu (Load Unsigned) instruction figures highly in

the covariance of all optimization levels. Like IA32, xor
(eXclusive OR) and sll (Shift Left, Logical) also rank

quite high.

classified as:
non-crypto crypto

7613 0 non-crypto
75 141 crypto

Classification rate
0% false positive

34.72% false negative
99.0% accuracy
100% precision

TABLE 6: LINEAR REGRESSION RESULTS FOR SPARC (98
DIMENSIONS).

Figure 7 shows the effect on a linear regression classifier

based on dimension selection using sorted covariance, CFS

and PCA. The accuracy of CFS closely follows sorted

covariance and adding 89 more dimensions only improves

it by 0.2%. Similiarly for false negative rate, sorted co-

variance and CFS follow a similiar curve with only slight

improvement as additional dimensions are added. PCA

161

Rank -O0 -O1 -O2 -O3 all
1 ρld ρldu ρldu ρldu ρldu
2 ρldu ρsll ρsll σsll σsll
3 σst σsll ρxor ρxor ρsll
4 σld ρxor σsll ρsll ρxor
5 σsll σand σand σand σand
6 σand σsrl σsrl σsrl σsrl
7 σsrl σldu σldu σxor σxor
8 ρst σxor σxor σor σor
9 ρxor σor σor σldu ρld

10 ρsll σld σld σld σldu
11 σldu ρor ρor ρor σld
12 σor σadd σadd σadd ρor

Fig. 6. Covariance analysis of positive features on SPARC.

shows inverse behavior on the FP and FN graphs: FP grows

as PCs are added (slowly) and falls on FN. Interestingly,

precision for PCA is consistently higher than the other

techniques.

Fig. 7. Covariance, PCA, CFS effect on AC, P, FN, and FP (SPARC).

V. CONCLUSION

A method for automatically determining the correct

opcodes to measure for the problem of identifying crypto-

graphic functions in object code has been presented. The

method was first applied to the Intel IA32 instruction set,

a complex instruction set computer, and then applied to a

reduced instruction set computer: SPARC. In both cases,

accuracy was demonstrated to be less than one percent

different after removing 90% of the measured dimensions.

With the reduced dimensionality, computational intelli-

gence algorithms can be applied without wasting time on

dimensions which add no useful information. This can be a

substantial computational savings as dimensionality is usu-

ally a multiplicative factor in the algorithmic complexity

of computational intelligence techniques.

In previous work, the dimensions of the problem were

expert defined, but the method presented here provides an

automatic, statistically driven method for identifying those

opcodes most indicative of cryptographic functionality. The

only task left for the human is the expert determination of

the cryptographic nature of each of the test samples.

REFERENCES

[1] P. Porras, H. Saidi, and V. Yegneswaran, “An analysis of conficker’s
logic and rendezvous points,” SRI International, Tech. Rep., March
2009. [Online]. Available: http://mtc.sri.com/Conficker/

[2] ——, “Conficker c p2p protocol and implementation,” SRI
International, Tech. Rep., September 2009. [Online]. Available:
http://mtc.sri.com/Conficker/P2P/index.html

[3] J. Grizzard, V. Sharma, C. Nunnery, B. B. Kang, and D. Dagon,
“Peer-to-peer botnets: overview and case study,” in HotBots’07:
Proceedings of the first conference on First Workshop on Hot
Topics in Understanding Botnets. Berkeley, CA, USA: USENIX
Association, 2007, pp. 1–1.

[4] K. Chiang and L. Lloyd, “A case study of the rustock rootkit and
spam bot,” in HotBots’07: Proceedings of the first conference on
First Workshop on Hot Topics in Understanding Botnets. Berkeley,
CA, USA: USENIX Association, 2007, pp. 10–10.

[5] “Export KnowledgeBase,” Black Duck Software. [Online].
Available: http://www.blackducksoftware.com/export/encryption-
source-code

[6] I. Guilfanov, “FindCrypt,” January 2006,
http://hexblog.com/2006/01/findcrypt.html.

[7] ——, “FindCrypt2,” February 2006,
http://hexblog.com/2006/02/findcrypt2.html.

[8] J. L. Wright, “Finding cryptography in object code,” in Security
Education Conference Toronto (SecTOR), October 2008.

[9] J. Wright and M. Manic, “Neural network approach to locating
cryptography in object code,” in IEEE Conference on Emerging
Technologies and Factory Automation (ETFA). IEEE, September
2009.

[10] Intel 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A: Instruction Set Reference A–M,
Intel Corporation, September 2009. [Online]. Available:
http://www.intel.com/products/processor/manuals/index.htm

[11] Intel 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A: Instruction Set Reference N–Z,
Intel Corporation, September 2009. [Online]. Available:
http://www.intel.com/products/processor/manuals/index.htm

[12] D. L. Weaver and T. Germond, Eds., The SPARC Architecture
Manual (Version 9). SPARC International, Inc., 2000.

[13] R. Moskovitch, C. Feher, N. Tzachar, E. Berger, M. Gitelman,
S. Dolev, and Y. Elovici, “Unknown malcode detection using opcode
representation,” in Proceedings of the 1st European Conference on
Intelligence and Security Informatics EuroISI. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 204–215.

[14] D. Bilar, “Opcodes as predictor for malware,” International Journal
of Electronic Security and Digital Forensics, vol. 1, no. 2, pp. 156–
168, 2007.

[15] J. L. Devore, Probabiliy and Statistics for Engineering and the
Sciences, 3rd ed. Duxbury Press, 1991, ch. Expected Values,
Covariance, and Correlation, pp. 200–206.

[16] M. A. Hall, “Correlation-based feature subset selection for machine
learning,” Ph.D. dissertation, University of Waikato, 1999.

[17] R. Kohavi and F. Provost, “Editorial: Glossary of terms,” Machine
Learning: Special Issue on Applications of Machine Learning and
the Knowledge Discovery Process, vol. 30, no. 2-3, 1998.

[18] B. Schneier, Applied Cryptography. John Wiley and Sons, 1996.
[19] GNU Assembler (as) Version 2.20, Free Software Foundation.

[Online]. Available: http://sourceware.org/binutils/docs-2.20/
[20] A. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of

Applied Cryptography, 5th ed. CRC Press, August 2001.

162

